Microelectromechanical Systems in Medicine

Owing to the massive growth in the field of biomedical microsystems, a variety of innovative micro-electro-mechanical systems (MEMS) devices have been introduced. For decades, the health care sector has been using macro devices but due to the various disadvantages that came along with the macro devices, research about micro devices began. Micro devices have various advantages such as low energy consumption, lightweight, biocompatibility, small size and many more. This paper mainly focuses on application of MEMS in the field of medicine in three main fields: (1) MEMS in diagnosis (2) MEMS in precision surgery (3) MEMS in therapeutic systems. BioMEMS in diagnosis help in precise and early detection of medical conditions. BioMEMS in the surgical field help in performing less invasive surgery and thus shorter recovery period. BioMEMS in therapeutic field enable therapy treatment with increased efficiency. Micro and miniature devices offer numerous novel treatments that can be performed with more precision and less complication. It is a challenging research field as it involves the study of complex functions of living bodies. Miniaturized analytical, surgical and therapeutic microsystems will become a necessity for the medical field in the long term, to obtain a more delineated view into the processes of the living body and to deliver precise quantity of drugs more efficiently. Application of BioMEMS in the area of stent fabrication, microneedles patch requires more research and has the potential to improve health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

History of Bio-microelectromechanical Systems (BioMEMS)

Chapter © 2021

Brief Introduction to Biomedical Microsystems for Interacting with Cells

Chapter © 2016

Rapid Prototyping of Biomedical Microsystems for Interacting at a Cellular Level

Chapter © 2016

References

  1. Website:https://www.mems-exchange.org/MEMS/what-is.html. Accessed 16 April 2016.
  2. Website:https://www.scribd.com/document/8477000/SeminaronMEMS-in-Medecine. Accessed on 26 June 2016.
  3. Dennis, L. (2001). Polla.MEMS technology for biomedical apllications. IEEE, 2001.
  4. Website: http://electroiq.com/blog/2013/10/mems-devicesforbiomedical-applications. Accessed on 30 April 2016.
  5. Nidhi, M., Gaurav, C., & Ramgopal Rao, V. (2014). A technology overview and applications of bio-MEMS. Journal of Institute of Smart Structures and Systems,3(2), 39–59. Google Scholar
  6. Shaurya, P., Marie, P., & Bharat, B. (2012). Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Resource document. The Royal Society. http://rsta.royalsocietypublishing.org/content/370/1967/2269#sec-11. Accessed 29 June 2016.
  7. Stefania, D., Daphné, D., Borja, S., Ana, B., González, G., José, R. S., et al. (2012). All-optical phase modulation for integrated interferometric biosensors. Optic Express. doi:10.1364/OE.20.007195. Google Scholar
  8. Kirill, E. Z., Ana, B., González, G., Carlos, D., & Laura, M. L. (2011). Integrated bimodal waveguide interferometric biosensor for label-free analysis. Journal of Lightwave Technology. doi:10.1109/JLT.2011.2150734. Google Scholar
  9. Mamas, I. P. (2007). Impedimetric biosensors and immunosensors. International Seminar on Analytical Sciences,2, 69–71. Google Scholar
  10. Kimberly, A. P., Azra, C. G., William, C. M., Irving, F. H., Audrey, E. P., Gift, K., et al. (2011). The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: A modelling study. Lancet. doi:10.1016/S0140-6736(11)60842-8. Google Scholar
  11. Shafiee, H., Jahangir, M., Inci, F., Wang, S., Willingbrecht, R., Guigel, F. F., Kuritzkes, D. R. & Demirci U. (2013). Acute HIV detection by viral lysate impedance spectroscopy on a microchip. Transducers, 2141–2144.
  12. Ahsan, S. M., Shahbaz, M. K., Nisar, A., Umair, M. K., & Azizur, R. (2016). Design and analysis of capacitance based BioMEMS cantilever sensor for tuberculosis detection. International conference on intelligent systems engineering.
  13. Rosminazuin, A. R., Badariah, B., & Burhanuddin Y. M. (2008). Design and analysis of MEMS piezoresistive SiO2 cantilever-based sensor with stress concentration region for biosensing applications. Resource Document IEEE. http://www.ece.umd.edu/class/enee719f/papers/cant_1.pdf. Accessed 25 April 2016.
  14. Hyung, H. K., Hyeong, J. J., Hyun, K. C., Jea, H. C., & Jeung, S. G. (2014). Highly sensitive mems biosensors for the detection of human papilloma virus by using magnetic force. International conference on miniaturized systems for chemistry and life sciences (Vol. 18, pp. 2035–2037).
  15. Mermagen, T. J., & Rod, B. J. (1983). Fabrication process for cantilever beam micromechanical switches. Resource Document Army Research Laboratory. http://www.dtic.mil/dtic/tr/fulltext/u2/a284124.pdf. Accessed 25 April 2016.
  16. Giovanni, D. P., Domenico, F., Jean, M. M., Fabrizio, T., Gaetano, S., di Lazzaro, B., Ester, C., Fabrizio, V., & Eugenio, G. (2102). Neurophysiological bases of tremors and accelerometric parameters analysis. IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics (Vol. 4, pp. 1820–1825).
  17. Alessandro, S. S., Giosuè, C., & Massimo, P. (2012). A CMUT probe for medical ultrasonography: From microfabrication to system integration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. doi:10.1109/TUFFC.2012.2303. Google Scholar
  18. Rebello, K. J. (2004). Applications of mems in surgery. Proceedings of the IEEE,92(1), 46. doi:10.1109/JPROC.2003.820536. ArticleGoogle Scholar
  19. Maeda, Y., Maeda, K., Kobara, H., Mori, H., & Takao, H. (2015). A pressure/temperature sensor embedded in an endoscopy hood for intraluminal monitoring during flexible endoscopic operation. Sensors, 2015 IEEE. doi:10.1109/ICSENS.2015.7370372.
  20. Kuwana, K., Nakai, A., Masamune, K., & Dohi, T.(2013). A grasping forceps with a triaxial MEMS tactile sensor for quantification of stresses on organs. In 35th annual international conference of the IEEE EMBS Osaka, Japan, 978-1-4577-0216-7/13. doi:10.1109/EMBC.2013.6610544.
  21. Hamidullah, M., Lin, A., Han, B., & Yoon, Y. (2012). A sensorized surgical needle with miniaturized MEMS tri-axial force sensor for robotic assisted minimally invasive surgery. IEEE 14th electronics packaging technology conference. doi:10.1109/EPTC.2012.6507051.
  22. Brookhuis, R. A., Sanders, R. G. P., Sikkens, B. N. A., & Wiegerink, R. J. (2016). Three-axis force-torque sensor with fully differential capacitive readout. Micro electro mechanical systems (MEMS), 2016 IEEE 29th international conference. doi:10.1109/MEMSYS.2016.7421772.
  23. Jeong, H., Li, T., Gianchandani, Y. B., & Park, J. (2014). Ultrasound-assited micro-knife for cellular scale surgery. In MEMS 2014-27th IEEE international conference on micro electro mechanical systems (pp. 885–888). [6765783] Institute of Electrical and Electronics Engineers Inc. doi:10.1109/MEMSYS.2014.6765783.
  24. Maeda, Y., Terao, K., Suzuki, T., Shimokawa, F., Takao, H. (2015). A tactile sensor with the reference plane for detection abilities of frictional force and human body hardness aimed to medical applications. Micro electro mechanical systems (MEMS), 2015 28th IEEE international conference. doi:10.1109/MEMSYS.2015.7050936.
  25. Chen, P., & Lal, A.(2016). A silicon/plastic hybrid tissue multimodal assay tweezer with integrated polysilicon strain gauge displacement sensor. 2016 IEEE 29th international conference on micro electro mechanical systems (MEMS). doi:10.1109/MEMSYS.2016.7421628.
  26. Tatar, F., Mollinger, J. R., Den Dulk, R. C., van Duyl, W. A., Goosen, J. F. L., & Bossche, A.(2002). Ultrasonic sensor system for measuring position and orientation of laproscopic instruments in minimal invasive surgery. Microtechnologies in medicine & biology 2nd annual international IEEE-EMB special topic conference. doi:10.1109/MMB.2002.1002334.
  27. Fang, C., Lee, S. (2002). A Research of Robotic Surgery Technique by the Use of MEMS Accelerometer. Engineering in Medicine and Biology. (2002). 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES conference, 2002. Proceedings of the Second Joint. doi:10.1109/IEMBS.2002.1053042. Google Scholar
  28. Gafford, J., Ranzani, T., Russo, S., Dr. Aihara, H., Dr. Thompson, C., Wood, R., & Walsh, C. (2016). Snap-on robotic wrist module for enhanced dexterity in endoscopic surgery. Robotics and automation (ICRA), 2016 IEEE international conference. doi:10.1109/ICRA.2016.7487639.
  29. Russo, S., Ranzani, T., Gafford, J., Walsh, C. J., & Wood, R. J. (2016). Soft pop-up mechanisms for micro surgical tools: design and characterization of compliant millimeter-scale articulated structures. Robotics and automation (ICRA), 2016 IEEE international conference. doi:10.1109/ICRA.2016.7487203.
  30. Pengwang, E., Rabenorosoa, K., Rakotondrabe, M., & Andreff, N. (2015). Structural analysis and static responses of electrostatic actuators for 3-DOF micromanipulators in phonomicrosurgery. Microsystems, packaging, assembly and circuits technology conference (IMPACT), 2015 10th international conference. doi:10.1109/IMPACT.2015.7365177.
  31. Rabenorosoa, K., Tasca, B., Zerbib, A., Pengwang, T. E., Rougeot, P., & Andreff, N. (2014). SQUIPABOT: A mesoscale parallel robot for a laser phonosurgery. 2014 international symposium on optomechatronic technologies. doi:10.1109/ISOT.2014.46.
  32. Website:http://electroiq.com/blog/2002/06/issys-makes-strategicdecisionbr-to-focus-on-the-medical-market/ accessed on 10:30 am, 20 th May, 2016.
  33. Goosen, J. F. L., Tanase, D., &French, P. J. (2000). Silicon sensors foruse in catheters. In Proc. 1st Annu. Int. IEEE-EMBS Special TopicConf. Microtechnologies Medicine and Biology, 2000, pp. 152–155.
  34. Goosen, J. F. L., French, P. J., & Sarro, P. M. (2000). Pressure, flow, andoxygen saturation sensors on one chip for use in catheters. In Proceedings IEEE thirteenth annual international conference on micro electro mechanical systems (Cat. No.00CH36308). doi:10.1109/MEMSYS.2000.838574.
  35. Haga, Y., Mineta, T., & Esashi, M. (2002). Active catheter, active guidewireand related sensor systems. In Proceedings of the 5th Biannu. World Automation Congress, (Vol. 14, pp. 291–296). doi:10.1109/WAC.2002.1049455.
  36. Kalvesten, E., Smith, L., Tener, L., & Stemme, G. (1998). The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings MEMS 98. IEEE. Eleventh annual international workshop on micro electro mechanical systems. An investigation of micro structures, sensors, actuators, machines and systems (Cat. No.98CH36176). doi:10.1109/MEMSYS.1998.659821.
  37. Tjulkins, F., Nguyen, A., Andreassen, E., Hoivik, N., Aasmundtveit, K., Hoff, L., Grymyr, O., Halvorsen, P., & Imenes, K. (2014). MEMS-based implantable heart monitoring system with integrated pacing function. In 2014 IEEE 64th electronic components and technology conference (ECTC). doi:10.1109/ECTC.2014.6897279.
  38. Huang, S., Wang, T., Wang, H., Huang, S., Lin, C., Kuo, H., & Yu, T. (2013). Design, manufacture and in-vitro evaluation of a new microvascular anastomotic device. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. doi:10.1109/EMBC.2013.6609879.
  39. Karen, C., & Philippe, R. (2005). BioMEMS in medicine: Diagnostic and therapeutic systems. In Proceedings of Essderc 2005: 35th European SolidState device research conference, pp. 345–350.
  40. Blake, W., Dewey, L., Joachim, M., Richard, T., & Jan, K. (2003). COCHLEAR IMPLANTS: Some likely next steps. Annual Review of Biomedical Engineering,5, 207–249. ArticleGoogle Scholar
  41. Rudolf, H., Christof, S., Hans, B., & Martin, K. (2008). A novel implantable hearing system with direct acoustic cochlear stimulation. Audiology and Neurotology,13(4), 247–256. ArticleGoogle Scholar
  42. Hans, B., Christof, S., & Yves, P. (2011). Design of a semi-implantable hearing device for direct acoustic cochlear stimulation. IEEE Transactions on Biomedical Engineering,58(2), 420–428. ArticleGoogle Scholar
  43. Casey, H., Howard, H., Jurg, J., Murray, G., Michelle, W., & Gordon, B. (2007). Deep brain stimulation in neurological disorders. Parkinsonism Related Disorder,13, 1–16. ArticleGoogle Scholar
  44. Yu-Po, L., Hung-Chih, C., Pin-Yang, H., Zong-Ye, W., Hsiang-Hui, C., Po-Chiun, H., Kea-Tiong, T., His-Pin, M., Hsin, C. (2013). An implantable microsystem for long-term study on the mechanism of deep brain stimulation. Biomedical circuits and systems conference (BioCAS), 2013 IEEE, pp. 274–277.
  45. Tohru, Y., Masami, W., Yasushi, O., Shigeru, O., & Toshiharu, M. (2005). Biohybrid retinal implant: Research and development update in 2005. 2nd international IEEE EMBS conference on neural engineering, pp. 248–251.
  46. Yagi, T., Ito, Y., Kanda, H., Tanaka, S., Watanabe, M., & Uchikawa, Y. (1999). Hybrid retinal implant: Fusion of engineering and neuroscience. In Proceedings of 1999 IEEE Int. Conf. on systems, man and cybernetics (Vol. IV, pp. 382–385).
  47. Thomas, S., Hans, R., Matthias, G., Martin, S., & J.-Uwe, M. (2001). A first approach towards a biohybrid neural interface to restore skeletal muscle function after peripheral nerve lesions. In Proceedings of the 6th annual International conference of the International Functional Electrical Stimulation Society, pp. 247–249.
  48. Soo, L., Jung, J., Youn, C., & Ji, K. (2009). Fabrication and characteristics of the implantable and flexible nerve cuff electrode for neural interfaces. 4th international IEEE/EMBS conference on neural engineering NER, pp. 80–83.
  49. Matteo, L., Peter, L., Daniel, B., Arnaund, B., & Philippe, R. (2004). First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Investigative Ophthalmology & Visual Science,45, 3113–3117. ArticleGoogle Scholar
  50. Sibi, S., Aman, A., Amritraj, K., & Sumangali, K. (2014). BioMEMS for treatment of glaucoma. International Journal of Engineering Trends and Technology,7, 105–109. ArticleGoogle Scholar
  51. Dardano, P., Caliò, A., Politi, J., Rea, I., Stefano, L., Palma, V., Bevilacqua, M., & Matteo, A. (2015). Diagnostic and therapeutic devices based on polymeric microneedles: fabrication and preliminary results. AISEM Annual Conference, XVIII, pp. 1–4.
  52. Michael, R., & Whye-Kei, L. (2004). Microsystems for drug and gene delivery. Proceedings of the IEEE,92(1), 56–75. ArticleGoogle Scholar

Author information

Authors and Affiliations

  1. Biomedical Department, Dwarkadas J. Sanghvi College of Engineering, Mumbai, 400056, Maharashtra, India Vaibhavi Sonetha
  2. Biomedical Engineering, Dwarkadas J. Sanghvi College of Engineering, Mumbai, 400056, Maharashtra, India Poorvi Agarwal, Smeet Doshi, Ridhima Kumar & Bhavya Mehta
  1. Vaibhavi Sonetha